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Figure 1: Dynamic map for a random input and random sequence of operations: edge–, vertex+, vertex+, edge+, vertex–, vertex+

Abstract
In this paper we study metaphoric maps of dynamic vertex-weighted graphs. Dynamic operations on such graphs allow a vertex
to change the weight, vertices and edges appear and disappear. In the metaphoric map this is viewed as country shrink and
growth, appearance and disappearance and change in the country adjacency. We present a force-based algorithm that supports
these operations. In the design of the algorithm we prioritize the dynamic stability of the map, the accuracy in the size of
countries and low complexity of the polygons representing the countries. We evaluate the algorithm based on the state-of-the-
art quality metrics for randomly generated inputs of various complexity.

1. Introduction

Visualization of dynamic graphs is a prominent topic in informa-
tion visualization. Multiple algorithms have been designed for vi-
sualization of dynamic graphs in form of node-link and matrix
representations [BBDW17]. Map-like graph visualizations, where
vertices are represented by polygonal regions and edges by con-
tacts among those, have also gained certain popularity [HHS20],
by making advantage of the human familiarity with geographic
maps. These visualisations have been seen to outperform treemaps
in the tasks that require recognition of hierarchy [BPP17] and found
more enjoyable than node-link visualizations [SSK16]. An impor-
tant advantage of these visualizations is that they can easily dis-
play the weights associated with the vertices, by the mean of re-
sizing the map’s regions. Such visualizations are also known as
area-proportional contact representations [Ala15] and are closely
relevant to cartograms [Tob04,NK16]. By Hogräfer et al. [HHS20],
map-like representations of graphs and cartograms lie on two op-
posite sides of a single spectrum of map-like visual representations.
Unlike the dynamic visualization of graphs [BBDW17] and dy-
namic cartograms [KNP04, CM08], dynamic map-like visualiza-
tions of graphs have seen little attention. In particular, while the
operation of weight change has been well-studies in the cartogram
literature, other dynamic changes, such as addition/removal of ver-
tices and edges, have not been unified under a single framework.

In this paper, we address this gap in the literature and present an
algorithm based on a force-directed simulation that produces an an-
imated map-like visualization of a dynamic vertex-weighted graph.
To make the task of comparing the areas of regions possible, we tar-
get to obtain regions that have relatively simple shapes. To ensure
the dynamic stability, we require that the dynamic graph differs be-
tween the two time stamps as little as possible, in particular, by a
single dynamic operation. We define the set of basic operations on
vertex-weighted dynamic graphs that are meaningful for maps-like
visualization (Section 3). Our algorithm works in two phases: the
static phase (Section 2), that produces a statistically accurate map
and the dynamic phase (Section 3), that implements the dynamic
operations. We evaluate our algorithm (Section 4) based on a mea-
sure of polygon complexity [BKSB95] and on the state-of-the-art
measure of statistical accuracy of cartograms [AKV15]. The code
of our implementation is publicly available [Sch20].

There exist theoretical approaches on achieving map-like visual-
izations with absolute statistical accuracy [Tho92,ABF∗13,Kle18],
which however are not guaranteed from regions with narrow corri-
dors that contradicts our goal of simply looking regions. Dynamic
cartograms [KNP04, CM08] allow only the operation of weight
change, and insist on preserving geographic accuracy, that is not
relevant for map-like representations of graphs. GMap [GHK10]
constructs map-like visualization of clustered graphs that had been
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Figure 2: (a) A planar drawing of a graph G0. (b) Placement of
dual vertices and bend-vertices. (c) The resulting map.

extended to work in dynamic setting [HKV14]. Here the dynamic
changes concern the clustered graph as opposed to our setting
where the dynamic changes are applied to the graph expressing the
adjacencies of the map. Additionally GMap does not try to achieve
accurate cartographic accuracy explicitly or to control the shapes
of the clusters. Simonetto et al’s force-directed algorithm [SAS16]
uses forces partially similar to ours to construct Euler diagrams
with smooth region boundaries. The algorithm does not target to
achieve simply looking regions or to resize them, neither does it
address the dynamic setting.

A dynamic graph is defined as a sequence Γ=(G0,G2, ...,Gn−1)
where Gi := (Vi,Ei,wi) is a vertex-weighted graph, wi : Vi → R+

it’s weight function, and indices refer to a sequence of time steps.
In a metaphoric map Mi of Gi vertices are depicted by polygons
(regions), the adjacent vertices appear as polygons sharing a non-
trivial boundary, finally each polygon’s area roughly corresponds to
the corresponding vertex’s weight. Statistical accuracy of Mi de-
scribes how closely the areas of its regions match their weights.
Graph Gi is referred to as contact graph of Mi. Throughout the pa-
per we treat a metaphoric map as a planar graph, the vertices and
the edges of which are represented by the union of the vertices and
edges of map’s polygons.

2. Generation of the map

In this section we describe the static phase of the algorithm, that
given a vertex-weighted graph, constructs its metaphoric map with
the goal to achieve high statistical accuracy and, at the same time,
to make the regions to have low complexity.

Initial drawing of the map This first step of the static phase takes
as input a planar graph G0 with a planar drawing Γ and produces
a map M of G0. We rely on the notion of the dual graph of G0 to
produce the map M. However, we treat the outer face of G0 in a
special way, by placing there as many vertices as the edges on the
outer face of G0 (instead of one vertex, as dictated by the definition
of the dual). Fig. 2 illustrates this procedure.

Force-directed steps Let M be the map produced in the first step, F
be the set of internal regions of M, w0 : F→R+ be the weight func-
tion. In the second step, we apply a force-directed graph drawing
algorithm to M to reduce the cartographic error |A(g)−w0(g)| for
every region g ∈ F by thus producing map M0. Here A(g) denotes
the area of region g. It is a hard requirement for this step to preserve
the planar embedding of M. As explained above, we also want the
regions of M0 to be visually simple. Our intuitive understanding of
polygon visual simplicity is that a region has a round-looking shape
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Figure 3: (a) Forces explained by the air-pressure. (b) Angular res-
olution force. (c) Vertex-edge repulsion force.

and thus does not have narrow corridors. For the formalization of
this notion refer to Section 4. Both the reduction of cartographic er-
ror and the achievement of visual simplicity are soft requirements.
We now describe the concrete force components. The constant fac-
tors of the forces were determined experimentally.

Air pressure Similarly to Alam et al. [ABF∗13], we treat the
polygonal regions as volumes of some amount of air equal to the
respective region’s weight. To eliminate the influence of the con-
stant factors of the region weights, we normalize the pressure P(g)

in an internal region g as P(g) = w0(g)
A(g)

∑ f∈F A( f )
∑ f∈F w0( f ) . We set the pres-

sure in the outer region go to P(go) =
∑ f∈F A( f )P( f )

∑ f∈F A( f ) = 1. The air
pressure in region g exerts a force on each bounding edge e based
on the pressure’s magnitude and the edge length `(e) in relation to
the length of the entire region boundary `(g). Therefore the force
on edge e from region g is ~F(e,g) = 3P(g) `(e)

`(g) r̂, where r̂ is a unit
vector perpendicular to e directed towards outside of g, Fig. 3(a).

Angular resolution Internal region angles close to 0◦ and 360◦

cause narrow corridors. Thus, inspired by Argyriou et al. [ABS13],
we define a force that tries to evenly distribute the angles
around a vertex. For a vertex v, we define the force ~F(u,v,w) =
1
2

360◦
deg(v)−αuvw

αuvw
b̂uvw, where αuvw denotes the angle ∠uvw and b̂uvw is

the normalized bisector of ∠wvu, refer to Fig. 3(b).

Vertex-vertex repulsion Similarly to Eades [Ead84], we define
a repulsive force between pairs of vertices to prevent the ver-
tices from clumping together ~F(u,v) = 25 1

‖−→uv‖2 ûv. Differently
from [Ead84], we apply this force to adjacent vertices too, because
we do not try to achieve a uniform edge length.

Vertex-edge repulsion In another attempt to prevent narrow corri-
dors, we define a repulsive force between vertices and edges. Given
an edge e and non-incident vertex v, let ~q denote the vector con-
necting v to the point on e with the smallest Euclidean distance to
v, and ê denote the unit vector perpendicular to edge e. We define
this force as ~F(v,e) = 10 1

‖~q‖2 (ê · q̂)q̂, refer to Fig. 3(c). Because
of the component ê · q̂ the force deteriorates as the angle between
ê and q̂ tends to 90◦. This force differs from the one defined by
Bertault [Ber00] in that it has an additional dot product term that
measures how v is positioned relative to the edge e. In our experi-
ments this led to more stable performance.

Both repulsion forces are applied on the elements on the same
face. Due to preserved planarity of the map this is enough to push
elements and improves the performance. Let ¯̀ denote the average
edge length. We eliminate vertices of degree 2 that become closer
than 1

10
¯̀ to their neighbor, if we can do so without introducing

edge crossings. We split in half the edges that get longer than 2 ¯̀, in
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Figure 4: Edge flip.

order to create more degrees of freedom for the region shapes. In
deciding how much a vertex can be displaced, we adopt the rules of
ImPrEd [SAAB11] that ensure that no vertex crosses over an edge,
which leads to the preservation of the planar embedding of the map.

3. Dynamic changes

We restrict the algorithm to the maps where: 1. no more than three
regions meet at a point; 2. the boundary of the map is a simple
polygon; 3. the common boundary of two regions is contiguous.
These are practically reasonable restrictions, which allow us to
slightly limit the scope of our experiments. These restrictions im-
ply that G is a simple, planar, biconnected and internally triangu-
lated graph. Thus, we only consider basic dynamic operations that
preserve these properties, i.e.: change of the vertex weight, inser-
tion/removal of an edge in the outer face, edge flip, vertex inser-
tion/removal. Known that any two triangulations with k vertices
can be transformed to each other by means of at most O(k) edge
flips [CHK∗18], it is possible to represent more complex operations
as sequences of the given basic operations. Basis dynamic opera-
tions are integrated into the force-directed simulations as follows.
We pause the simulation, perform an operation on the current map
Mi, producing map Mi+1 and then resume the simulation on Mi+1.

Edge flip Consider an internal edge (u,v) of Gi that is incident to
two internal faces f and g. Let x and y be the third vertices bounding
f and g, resp. Since Gi is simple, x 6= y. The operation of edge flip
replaces the edge (u,v) by the edge (x,y). To preserve the simplicity
of Gi, flipping (u,v) is permitted only if (x,y) 6∈ Gi. An edge flip
translates to region adjacency being flipped in the map. An edge flip
is performed in map Mi in two phases; Fig. 4. First, we contract the
boundary P between regions u and v into a single point p. Then, we
expand p into a segment representing a boundary between x and
y. During this procedure we make sure that no new crossings are
introduced by means of adding bend-vertices.

Inserting and removing edges on the outer face The edge flip
operation describes how internal regions change adjacencies. How-
ever, the same should be possible for external regions. This corre-
sponds to the operation of edge insertion and removal in the outer
face. In order to preserve Gi being internally triangulated, insert-
ing (u,w) is only permitted if there exists a vertex v, and (u,v)
and (v,w) which lie on the outer face. Removing an edge (u,w) on
the outer face of the contact graph is only permitted if the graph
remains biconnected, which happens if the third vertex v in the in-
ternal face bounded by (u,w) does not lie on the outer face. Both
of these operations are a special case of the edge flip operation.

Inserting a vertex We discuss the case of inserting into internal
face, with external face being a special case. All internal faces of
the contact graph Gi are triangles. If we add a vertex x into face

(a) (b)

Figure 5: (a) Cartographic error and (b) polygon complexity for
100 random instances of varying size after 200 force-directed steps.

bounded by u, v, and w, we also add edges (x,u), (x,v), (x,w), to
preserve the triangulatedness. Let puvw be the vertex of the map Mi
that is common to regions u, v, and w in Mi; Also, let puv, pvw,
and pwu denote the bend-vertices on the boundary of these faces
that are incident to puwv. If any of the boundaries consist of only
one edge, we subdivide it at its midpoint first. We then remove the
vertex puvw along with its incident edges and insert edges between
the bend-vertices puv, pvw, pwu instead, in order to bound a new
region x. To avoid crossings we add bends-vertices to those edges.

Removing vertex When removing an internal vertex x from Gi, we
check whether deg(x) = 3 i.e. Gi+1 stays internally triangulated.
Let u, v, and w be the three neighbors of x. In order to avoid a hole in
the map Mi+1, the three regions u, v, and w must take over the area
of region x. Thus we remove the boundary between x and one of
u, v and w. In practice, the removal operation is barely noticeable,
because region x gets smaller before it disappears from the map.
Removing a vertex on the outer face of Gi is a special case of the
above but is performed only when Gi+1 stays biconnected.

4. Evaluation

Quality metrics The design and evaluation of our algorithm was
driven by the goals of ensuring the dynamic stability of the algo-
rithm, the statistical accuracy of the maps and the reduction of the
visual complexity of the regions. The dynamic stability is ensured
by the design – the algorithm is based on the force-directed simula-
tion and the operations perform minimal changes to the map; Fig.1.

Let w(v) and A(v) denote the desired and the actual area
of the region v. To evaluate the statistical accuracy of the
map, we use metric normalized cartographic error [AKV15]:

max
v∈V (G)

|A′(v)−w(v)|
max{A′(v),w(v)} , here A′(v) := A(v) ·

∑
u∈V

w(u)

∑
u∈V

A(u) .

To quantify the complexity of regions, we rely on the measure
proposed by Brinkhoff et al. [BKSB95], composed of three in-
gredients which we define next. Let P be a polygon with n ver-
tices and let hull(P), A(P) and circ(P) denote the convex hull,
the area and the length of the boundary, resp. Let L(P) be the
number of P’s internal angles that are greater than 180◦, and let
L′(P) := L(P)/n− 3 with L′(P) := 0 in case that n ≤ 2. The fre-
quency of the vibration of P is defined as freq(P) := 1 + 16 ·
(L′(P)− 0.5)4 − 8 · (L′(P)− 0.5)2 ∈ [0,1] and its amplitude as
ampl(P) := circ(P)−circ(hull(P))

circ(P) ∈ [0,1]. Function freq(P) is 0 for
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Figure 6: (a) A map after generation, (b) after 200 of force-directed
steps, (c-d) the air pressure in the regions before and after.

a convex polygon and is maximum when half of the angles are
large. Function ampl(P) is also 0 for a convex polygon and tends
to 1 when the boundary of the polygon is getting longer compa-
rably to the length of the convex hull. To measure the convex-
ity of a polygon, we slightly modify the measure proposed by
Brinkhoff et al. in order to differentiate between lengthy and fat
convex polygons. Thus we measure the fraction of area the poly-
gon P does not cover in its smallest enclosing circle, denoted by
encirc(P). To keep the metric in the unit interval, we actually com-
pare P’s area to the maximal area of a regular n-gon in said small-
est enclosing circle: conv(P) := 1− A(P)

A(encirc(P))·sin( 360◦
n )· n

2π

∈ [0,1]

Brinkhoff et al. combine these three properties as compl(P) :=
0.8 · ampl(P) · freq(P)+ 0.2 · conv(P) ∈ [0,1] According to them,
measure compl(P) is able to capture the intuitive perception of a
polygon’s complexity [BKSB95]. In our tests, this slightly modi-
fied measure, which we refer to as polygon complexity, has shown
to align with our intuitive understanding of visual complexity.

Test data In order to evaluate our algorithm, we have generated
a set of planar contact graphs, each accompanied with a planar
straight-line drawing thereof and a sequence of dynamic operations
to be applied to it. To see how the algorithm performs for the in-
puts of various complexity we explored the following observation:
if the contact graph of a map contains a cycle of length k with a
vertices in this cycle, the map will need to contain a ring composed
of k polygons with a polygons inside it. The smaller the k and the
larger the a, the harder is to create a map without thin regions. To
implement this idea, we construct a Delaunay triangulation of ran-
dom point sets and iterate on this process in some of the triangles.
The parameter nesting ratio α ∈ [0,1] determines what fraction of
the vertices are nested into other triangles; The parameter nesting
bias β ∈ [0,1) determines the depth of the nesting.

Results of the experiments In our experiments we were driven by
three questions: 1. What is the quality of the maps after the static
phase? 2. Does the quality of the maps depend on the complexity
of the contact graphs, when the complexity is measured by graph
size, nesting ratio and nesting bias? 3. Does the quality of the map
changes when dynamic operations are applied? Applying our algo-
rithm to graphs with up to 90 vertices, we have seen that the quality
of the map stabilizes after 200 force-directed steps, that average
cartographic error is below 0.3 and that neither the cartographic
error nor polygon complexity are strongly affected by the graph
size; Fig 5. It has been proven that maps we consider in this paper
can be modified to have cartographic error zero [Tho92, ABF∗13],
however, in both cases regions can have long and skinny parts and
no theoretical guarantees are known on the fatness of the regions.
Thus, our algorithm is not achieving close to optimal cartographic
error but this comes with the advantage of simply looking regions
with low polygon complexity. A map with 30 regions after the gen-

(a) (b)

Figure 7: (a) Construction time with 200 force-directed steps. (b)
Map with 90 regions.

(a) (b)

Figure 8: Polygon complexity for 100 random instances with n =
20 (a) with different nesting ratios α and nesting biases β, (b) after
applying a number of operations with α = β = 0.

eration and after 200 force-directed steps is illustrated in Fig. 6.
We observe that most of the regions have a simply looking organic
shape and the air-pressure significantly decreases. There are sev-
eral regions that are lengthy, but they have small areas and complex
pattern of adjacencies, which explains their more complex shape.
The running time of the algorithm depends on the number of force-
directed steps, thus if we fix those to 200 the time is mostly below 8
seconds and the quality of the map remains stable with the increase
of the size; compare Fig. 5 and Fig. 7.

We observed a pronounced impact of the nesting ratio α on the
polygon complexity; Fig. 8.a. This confirms the observation that
small cycles in contact graph with many vertices embedded in those
cycles, force the regions of the cycle to be complex. When applying
dynamic operations on the map, we have observed that the carto-
graphic error initially decreases. We believe that this occurs par-
tially due to the increased amount of vertices on the regions bound-
aries, which allow for more complex shapes and therefore better
accuracy and partially due to the fact that force-directed simula-
tion has more time to optimize the layout. The polygon complex-
ity, on the other hand, increases over time; Fig. 8.b. Recall that the
new vertices in the contact graph are added by nesting them into
triangles, by leading to the increase in the nesting ratio, and thus
explains the increase in the polygon complexity.

Conclusion The presented algorithm is targeting visualisation of
dynamic vertex-weighted graphs. However, it can be also used to
visualize dynamic clustered graphs, by using the cluster sizes as
weights. In this view, it is intriguing to compare the performance
of our algorithm to dynamic GMap [HKV14]. Another research
direction is to study whether the polygon complexity metric is an
appropriate measure for quantifying complexity of map-like visu-
alizations and indeed correlates with the human perception in this
setting.
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